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ABSTRACT

-- It is found that it is possible to propagate a horizontally polarized

(SH) wave without dispersion through an elastic, periodically-layered com-

posite. The nondispersive property of the wave is due to the fact that at

each interface the angle of incidence is such that the wave is totally trans-

mitted without reflection. In optics such an angle is referred to as the

Brewster angle. It is determined that this particular case is contained as

a special solution of the general dispersion equation for SH waves, which has

not been noticed before.

Accessi,' -_

NTIS

DTIC T.

Py~

D t "i "

Avch

L!



1. INTRODUCTION

For horizontally polarized shear waves impinging upon an interface be-

tween two media with different properties, it is well known that in general

there will be both a transmitted and a reflected wave. For a special angle of

incidence the amplitude of the reflected wave is known to be zero and only

the transmitted wave will remain. In optics this angle is referred to as the

Brewster angle. Under these very special conditions it can be expected that

this same reflection-free phenomenon must exist in a bi-laminated conposite.

This is a special case which has been overlooked in the general treatment of

wave propagation in anti-plane strain [1]. It is the aim of this paper to ex-

amine in detail this particular phenomenon of non- spersive wave propagation

in a layered medium.
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2. BREWSTER ANGLE

We begin by examining the case of an infinite SH wave train impinging at

an angle e upon the interface of two semi-infinite elastic homogeneous media

of different properties. In general, a portion of the wave will be reflected

and a portion will be transmitted (see Fig. la). For a particular angle of in-

cidence the wave will be totally transmitted (Fig. lb). The angle eB is

called the Brewster angle and is given by an expression of the form [2]

F (~ ( - 11
sin 6B  ] A ()

where p,p and p',p' are the shear moduli and density in the two media,

respectively. The feature of no reflection can be generalized from the case

of two semi-infinite media in contact to the case of an infinite laminated

medium (Fig. 2). Here the condition of no reflection occurs at each inter-

face. As a result we can state that the laminated composite is capable of

supporting such reflection-free waves. An immediate observation is that these

waves are independent of the frequency, i.e. "nondispersive". In frequency-

wave number space, waves propagating in such a fashion are represented by a

straight line. A discussion of this phenomenon for antiplane strain wave

propagation in an infinite periodically layered composite has not been noted

before. In the next section we will take a closer look at the dispersion

relation for the infinite laminated composite and examine this noteworthy dis-

persion-free propagation phenomenon.



3

3. DISPERSION IN AN INFINITE LAMINATED MEDIUM

We consider horizontally polarized harmonic shear waves (SH waves) prop-

agating through a periodically layered elastic body of unbounded extent. The

union of any two contiguous layers in the body constitutes a unit cell, and

this unit cell is invariant under a lattice translation along the positive

and negative y-axes (Fig. 2). Each of the two layers in the unit cell are

assumed to be homogeneous, isotropic, and perfectly bonded to the adjoining

layers. The two lamellae of a typical unit cell have elastic constants

[(A,li) ; (',i')] , thicknesses (2h;2h') , and densities (p;p') , respectively.

Let u , v and w be the three Cartesian components of the displace-

ment vector in the x, y and z-directions, respectively. For antiplane motion,

we take

v ' w F 0 and u = u(y,z;t) (2)

For the layers with unprimed constants in the Nth unit cell, the equation of

motion is

12u + a2u a2u

\ay2 az 2,~ 2 h Y N:jh) , t > 0YN at - hY (3)

where yN is a local coordinate with its origin at the midplane of the layer

(Fig. 2). For plane waves traveling in the positive z-direction, we assume

u ffi f(yN) ei(k z - wt)u e z(4)
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where k is the wave number in the z-direction and w is the circular fre-z

quency in radians per unit of time. Substitution into (3) yields the ordinary

differential equation

d 2 f (L2 -k 2) f _ , (-h<yNj< h)2 z - (5)dYN

whose solution may be written in the form

=( exp ( iTrcLY N+ Cexp (_ I1TcYN)(6

12 - 2Here a 40 , and Q and C are, respectively, the nondimensional

frequency and wave number defined by

2hw 2h
k (7)

Z

The displacement component now takes the form

u(YN9 z;t) = [ 1 exo(± Y) + C2exp ( i~~aYN)-\ 2h 2 x h 1

x exp [A" z - F Qt) , (-h <_ N < h) ,t > 0(8
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In a similar manner, the displacement component of the layer with primed con-

stants in the Nth unit cell can be written as

u'(YNZ;t) =1C exp 2 exp 2h
2h /

x exp i z -C Ot ,(- Y h') t,

where a' = 202 C 2 and a2 =(P O

The layers are considered to be perfectly bonded, so continuity of dis-

placement and traction must be enforced at the layer interfaces. The conti-

nuity conditions between the two layers in the Nth unit cell and the adjoining

layer in the (N + l)th unit cell are

u(-h,ZN) = u'(h',zN;t)

a (-hz ;t) = a' (h',z;t)
xy 'N xy 'N'

< ZNZN+ < t > 0

u(h,zN;t) = u'(-h',z'+;0

G (h,z ;t) = a (-h',z+;t) (10)
xy N' xy N+l'

It may now be noted that the equation of motion for the laminated body

B takes the form of a partial differential equation with coefficients which

are periodic in the y-direction with period d - 2(h + h) . This follows

from the fact that the coefficients of the equation of motion (the elastic

moduli and mass density) are piecewise constant in each layer and have periodic
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variation from cell to cell. It is well known from the one-dimensional theory

of Floquet [4] or the three-dimensional theory of Bloch that differential

equations with periodic coefficients admit solutions of the form

u(y,z;t) = g(y,z;t) eikyy (11)

where g(y,z;t) has the same periodicity as the coefficients of the differ-

ential equation, i.e.,

g(y + d,z;t) = g(y,z;t) (12)

From (11) it is seen that k has the character of a wave number; it is said
Y

to be the wave number of the Floquet wave. Equations (11) and (12) lead

immediately to the quasi-periodic recurrence relation

Ak d
u(y + d,z;t) = u(y,z;t) e y (13)

The Floquet solution (11) has several other interesting properties. In

particular, it is not difficult to show that the wave number k is uniquely
Y

determined only to within an integer multiple of 27/d . This fact, its

physical significance, and other properties of the Floquet solution are dis-

cussed in some detail by Lee [3].

Using (13), the last two equations of (10) may be written as

u(h,zN;t) = u (-h',zj;t) eikyd
N t>N

xy(h,ZN;t) = Gxy(-h',z';t) eild (14)
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which together with the first two equations of (10) now represent a set of

displacement and traction continuity conditions written in terms of the dis-

placements and stresses at the interfaces of the Nth unit cell. If these are

satisfied, the quasi-periodicity condition (13) will insure continuity of dis-

placement and traction across the interfaces of every unit cell of the lami-

nated medium.

Substituting (8) and (9), and the isotropic stress-strain relation

o = u(au/ay) into (14) and the first two equations of (10), we obtain axy

set of four homogeneous equations. For a nontrivial solution, the determinant

of the matrix of coefficients must vanish, yielding the dispersion equation

e e _e -e-4 4 E$4 - $-

yoe -yae -n e c e

e ( *_ - ) e ( +C s) = 0 (15)

'e _ye$ _ 4 ) . (4+)-') )e _ e
yote -yae -a e a e

where * = ina/2 , @< = iw'/2 , 4 = in(l+)n , c = h'/h , y p/p , and

= (2h/ff)k y This equation may be written in the convenient form

= 4yca ' cos n(l + c) + (ya - ')2 cos 7(a - Ca')

- (ya + a) 2 cos (a + ca') = 0 (16)

Since this equation remains unaffected by a change in sign in n or C , both

these quantities may be assumed positive. However,- if either one or both of
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a and a' is imaginary, (16) must be appropriately interpreted in terms of

hyperbolic functions.

It may be noted that, since (16) relates a nondimensional frequency to

two nondimensional wave numbers, the roots of this equation define a surface

in frequency-wave number space, which is called the dispersion surface. A

qualitative sketch of this surface, drawn on an extended zone scheme [3], is

shown in Fig. 3. It can be seen that the surface is,in general,discontinuous

at n = n/(l + E) , n = 1,2,.... These planes of discontinuity divide the sur-

face into Brillouin zones, the first three of which are shown in the sketch.

The geometric and material parameters used here and throughout the remainder

2
of this paper are y = 0.02 , a = 0.06 , and c = 4

In the past the physical interpretation of the wave numbers n and C has

been quite deficient. Until now no simple example was known which would give

insight into the nature of these wave numbers.

A description of the nondispersive propagation in terms of the wave-

numbers n and C illustrates a point which is,in general,not sufficiently

appreciated. In some papers (e.g. [5]), the wave numbers n and 4 were

treated as vector components of a single wave number measured normal to a plane

wave front. It is clear from Fig. 5 that, in general, the wave forms of the

type appropriate to layered composites are not plane waves, except in the case

= 0 . Intuitively, some average propagation direction should be described

by the relation C/n . Our intuition fails us if we guess that this direction

may be defined by connecting any two corresponding points in adjacent unit

cells in the wave vector representation of Fig. 4a. Based on the previous

numerical values chosen, we can calculate an effective propagation direction

as defined by the line connecting two corresponding points (A,B) in adjacent



unit cells from the wave vector representation (see Fig. 4b). For the para-

meters chosen,an angle of -6* is obtained for 6

By careful inspection of the dispersion surface we find that the only

possible direction for a straight line in frequency-wave number space which

lies entirely on the surface is illustrated by the straight line OABC in

Fig. 2. It can be shown that the equation of this line satisfies the disper-

sion equation. Again, for the particular parameters chosen we find for a

propagation direction given by C/n a value of - 41'. Thus our initial guess

for the propagation direction based on the wave vector representation is not

correct.

A dual representation to the wave vector is by means of the wave front.

In an infinite homogeneous isotropic elastic space the wave vector is normal

to the wave front. For the laminated composite this is true within each layer,

but not in an average sense. Fig. 5a shows the wave front corresponding to

the wave vectors of Fig. 4a. Fig. 5b shows the "averaged" wave front. The

calculated angle 0 for the assumed properties was found to be identical to

the value obtained from the dispersion surface. This can be shown mathemat-

ically by considering two such wave fronts as shown in the next section.

This shows quite clearly the manner in which n and C can be regarded

as vector components of some "equivalent" wave front. This illustrative ex-

ample derived from this nondispersive propagation direction appears to be the

only case where wave fronts can be drawn easily.

An unexpected sidelight of this analysis deals with the concept of what

is meant by a nondispersive wave. We previously stated that a straight line

in frequency-wave number space represents nondispersive wave propagation. This

could be interpreted as meaning the group velocity, as defined by
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C 3H _

remains constant. This is in addition to the phase velocity

p Ine 1+ eI

where e and e are unit vectors perpendicular and parallel to the layers,

respectively, remaining constant. For the present case the line OABC in

Fig. 3 certainly satisfies the second criterion. But the group velocity is

only constant if we restrict our attention to the line OABC . In an experi-

ment in which the .atio of /n is fixed and we move only along the line

OABC , we would indeed find that the system is nondispersive. If, instead,

one is permitted to sample in other propagation directions, we would find

that the group velocity is not constant along the line OABC and the disper-

sive-free nature is lost.
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4. SPECIAL SOLUTION OF THE GENERAL DISPERSION EQUATION

In this section we will show that there exists a straight line in fre-

quency-wave number space which satisfies the dispersion equation identically.

Also it will be shown that the ratio of the wave numbers for the effective

plane wave is the same as the ratio of t to n found previously.

We first show that the equation of a line through two points (Q0 ' 0

n0) and (Q) ' i ' 1 in frequency-wave number space can be written in the

following form:

n n o o Q 0 - 0= - (17)

n.- no C1 - Co 1 - O

For convenience we choose (R0 9 0 ' = (0 , 0 , 0) and let (1 ' 1'

nI) be the coordinates of the point A in Fig. 3. In this case the equation

of the line through these two points can be written as:

:____(18)
1+ 2_ 2 i Il-y-

1 1 1_

We can rewrite the dispersion equation in the following form:
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4 V 1 2V 2 -1 cos (r20) + ) + 2 1

1 2

c2 2 l - 4 2 + + I -
-2 - =0

II

From (18) we find for P/t

Y __ (20)

a 2 
2

Substituting into (19) and dividing by C gives, after rearranging,

2 (l + c)2 1 (a 2 __)_ + I
2

a2  2 c- .2 2 2 2

S(21)

But from (18) we see that

1-2
ri(1 + C) - 1+ y) 2 2 (22)

a -2
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In this case the dispersion equation is satisfied identically for the line

defined by (18).

The only remaining question concerns the relationship between the wave

number components of the effective plane wave and the wave numbers C and n

To clarify this point we consider two consecutive wave fronts defined

by BIF and EDH (see Fig. 6). The straight lines BF and EH are the effective

plane wave fronts. Using some definitions from wave mechanics and trigonom-

etry, we will now derive the relation between k and k (the effective wavex y

numbers in the horizontal and vertical direction, respectively) and the wave

number C and n . We note first that

kx EF 2(h + h)
k FH - 2(h cot 0 + h' cot V) (23)
y

This can be rewritten as

k
_x2= 1 + e (24)

ky Cot _.R + C

z c \

where z = (1) ,Z = (Wp') are the impedances, and c = (/p)P

c' = ('/p,) 1 are the phase velocities. The expression in parentheses can
p

be rewritten as

z IC
- -+ e= +E • (25)
z p
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Substituting (25) into (24) gives

kx + E YO. + tan ' (26)

y cot 0-(!-+) y)
Y

Using Snell's Law we can obtain, after some manipulation

2

tan -( 2-) (27)

2c
P

p

This can be rewritten as

2

tan 82 (28)

Thus we obtain after substituting into (26) and rearranging

k (i+ ) ( 2)
= - (29)

y I+yE

If we now return to equation (18), we note that the expression for r/q is

identical to equation (29). Thus finally we have

k 4
. = - ( 3 0 )

k y n



CONCLUS ION 

1

What we have shown here is that a singular propagation direction exists

for SH waves in an infinite laminated composite along which no dispersion

takes place. In addition, a simple wave front representation for this non-

dispersive propagation provides a clear illustration of the manner in which

the ratio, C/n , characterizes the propagation direction. This should clear

up some confusion which has existed in the past concerning the sense in

which C and 9 are related to vector components of plane waves. It should

also be pointed out that this reflection-free phenomenon is possible only for

wave systems which can be described by a single potential, e.g. SH waves. A

similar situation is not possible for waves in plane strain.
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FIGURE CAPTIONS

Fig. la SH wave impinging upon interface

Fig. lb SH wave impinging at Brewster angle

Fig. 2 Geometry of layered composite

Fig. 3 Dispersion surface for laminated medium

Fig. 4a Wave vector representation

Fig. 4b Effective wave vector

Fig. 5a Wave front representation

Fig. 5b Effective wave front

Fig. 6 Detail of wave front
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Figure 3
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